Rogers-Shephard type inequalities for sections
نویسندگان
چکیده
منابع مشابه
Functional inequalities related to the Rogers-Shephard inequality
For a real-valued nonnegative and log-concave function f defined in R, we introduce a notion of difference function ∆f ; the difference function represents a functional analog on the difference body K + (−K) of a convex body K. We prove a sharp inequality which bounds the integral of ∆f from above, in terms of the integral of f and we characterize equality conditions. The investigation is exten...
متن کاملeb 2 00 7 A sharp Rogers & Shephard type inequality for the p - difference body of planar convex bodies
We prove a sharp Rogers & Shephard type inequality for the p-difference body of a convex body in the two-dimensional case, for every p ≥ 1. AMS 2000 Subject Classification: 52A40, 52A10.
متن کاملOn Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کاملSymmetric Rogers-Hölder's inequalities on diamond-α calculus
We present symmetric Rogers--Hölder's inequalities on time scales when $frac{1}{p}+frac{1}{q}+frac{1}{r}=0$ and $frac{r}{p}+frac{r}{q}$ is not necessarily equal to $1$ where $p,$ $q$ and $r$ are nonzero real numbers.
متن کاملRogers-ramanujan Type Identities for Alternating Knots
We highlight the role of q-series techniques in proving identities arising from knot theory. In particular, we prove Rogers-Ramanujan type identities for alternating knots as conjectured by Garoufalidis, Lê and Zagier.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2020
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2020.123958